از زیباترین استدلال های یونان قدیم
یکی از زیباترین استدلالهایی که ریاضی دانان یونان پس از شناخت رابطه فیثاغورث و آشنایی با مثلث قائم الزاویه ای که دو ضلع مجاور به وتر آن بطول 1 بود انجام داده اند آن است که "رادیکال دو" (2√) یا همان ریشه دوم عدد 2 نمی تواند یک عدد گویا باشد.
استدلال آنها بسیار ساده بود در نظر می گیریم که ریشه دوم عدد 2 بصورت یک کسر گویا (2√=a/b) بیان شود. همچنین فرض می کنیم که a/b کسر ساده شده می باشد و صورت و مخرج مقسوم علیه مشترک ندارند. در آنصورت اگر طرفین معادله را در خود ضرب کنیم (یا به توان دو برسانیم) باید داشته باشیم : a2/b2=2
بنابراین خواهیم داشت که : a2=2b2
رابطه اخیر نشان می دهد که a2 یک عدد زوج می باشد، بسادگی می توان نتیجه گرفت که a نیز باید عدد زوج باشد (چرا؟) ، بنابراین اگر a را بصورت 2t نمایش دهیم خواهیم داشت : 4t2=2b2
اگر معادله بالا را ساده کنیم خواهیم داشت که : b2=2t2
یعنی b هم یک عدد زوج می باشد(چرا؟) ، بنابراین a و b هر دو مقسوم علیه مشترکی مساوی 2 دارند و این مخالف فرضی است که در ابتدا انجام دادیم. بنابراین نمی توان عدد رادیکال دو را بصورت یک کسر گویا نمایش داد.
استدلال آنها بسیار ساده بود در نظر می گیریم که ریشه دوم عدد 2 بصورت یک کسر گویا (2√=a/b) بیان شود. همچنین فرض می کنیم که a/b کسر ساده شده می باشد و صورت و مخرج مقسوم علیه مشترک ندارند. در آنصورت اگر طرفین معادله را در خود ضرب کنیم (یا به توان دو برسانیم) باید داشته باشیم : a2/b2=2
بنابراین خواهیم داشت که : a2=2b2
رابطه اخیر نشان می دهد که a2 یک عدد زوج می باشد، بسادگی می توان نتیجه گرفت که a نیز باید عدد زوج باشد (چرا؟) ، بنابراین اگر a را بصورت 2t نمایش دهیم خواهیم داشت : 4t2=2b2
اگر معادله بالا را ساده کنیم خواهیم داشت که : b2=2t2
یعنی b هم یک عدد زوج می باشد(چرا؟) ، بنابراین a و b هر دو مقسوم علیه مشترکی مساوی 2 دارند و این مخالف فرضی است که در ابتدا انجام دادیم. بنابراین نمی توان عدد رادیکال دو را بصورت یک کسر گویا نمایش داد.
+ نوشته شده در شنبه بیست و هشتم آبان ۱۳۸۴ ساعت 16:20 توسط سهیل یزدانی
|
ریاضیات علم آموختن اندیشیدن است نه آموختن اندیشه ها!